Abstract

Intein-mediated protein splicing has found broad biotechnological applications. Herein, we describe our recent result in engineering a photoactivatable intein compatible with living mammalian cells. A photocaged cysteine amino acid residue was genetically introduced into a highly efficient Nostoc punctiforme (Npu) DnaE intein. The resulting photocaged intein was inserted into a red fluorescent protein (RFP) mCherry and a human Src tyrosine kinase to create inactive chimeric proteins. A light-induced photochemical reaction was able to reactivate the intein and trigger protein splicing. Active mCherry and Src were formed as observed by direct fluorescence imaging or imaging of an Src kinase sensor in mammalian cells. The genetically encoded photocaged intein is a general optogenetic tool, allowing effective photocontrol of primary structures and functions of proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.