Abstract
Phosphatidylethanolamine N-Methyltransferase (PE N-MTase) is the enzyme responsible for the synthesis of phosphatidylcholine from phosphatidylethanolamine by successive transfer of methyl groups. This enzyme is present in bovine rod outer segments (ROS) and it is the only pathway for the synthesis of phosphatidylcholine in the outer segment of rod photoreceptor cells. In dark-adapted ROS membranes PE N-MTase activity is stimulated by 100% when ROS membranes are incubated under light condition. To determine whether the retinal G protein, transducin (Gt), intervenes in the regulation of PE N-MTase in these membranes, the effects of guanosine 5′-O-(3-thiotriphosphate) (GTPγS) and guanosine 5′-O-(2-thiodiphosphate (GDPβS) on the enzyme activity were examined. In dark, GTPγS which induces dissociation of Gt, stimulates the enzyme activity mimicking the stimulation by light. On the contrary, GDPβS stabilizes the inactive state of Gt, inhibiting the stimulation by light of PE N-MTase without affecting basal activities. In addition, adenosine 5′-diphosphate (ADP)-ribosylation by cholera and pertussis toxin was studied. ADP-ribosylation of ROS membrane with pertussis toxin, which stabilizes transducin in its inactive state, prevents the light-induced increase in PE N-MTase activity. On the contrary ADP-ribosylation with cholera toxin stimulates the enzyme activity. Our findings therefore suggest that light-stimulated effect of PE N-MTase activity is transducin-mediated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.