Abstract

Light acclimatisation capabilities of Elodea nuttallii at nearly ambient DIC conditions were investigated by determining growth characteristics, main photosynthetic parameters and pigmentation of plants incubated at 5 different irradiances (10–146 μmol photons m−2 s−1). Positive net growth was observed under all light treatments tested. Maximum ratio root versus shoot (r:s) of 1.86 was achieved at medium irradiances (72–94 μmol photons m−2 s−1), whereas at low (10 μmol photons m−2 s−1) and high irradiances (146 μmol photons m−2 s−1) r:s was significantly lower (0.39 and 1.05, respectively). With respect to main photosynthetic parameters, an increase of light compensation points (Ec), attended by decreasing ratios of light saturation points of photosynthesis (Ek)/irradiance were observed. Ec values were comparable to other low-light adapted macrophytes, which indicate that E. nuttallii can be regarded as a low-light adapted plant, under photorespiratory conditions. This was also confirmed by maximum Ek values of just 73 μmol photons m−2 s−1. Further support was achieved from pigmentation and non-photochemical quenching (NPQ) data, both indicating rather limited acclimatisation ability at light treatments above 90 μmol photons m−2 s−1. These results are discussed with respect to the competitive abilities of E. nuttallii under nearly ambient (photorespiratory) DIC conditions, especially in dense stands and turbid phytoplankton-dominated waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.