Abstract

A feasible and sensitive colorimetric platform was established for the assay of acetylcholinesterase (AChE) activity and evaluation of its inhibitor screening, based upon the light-accelerating oxidase-mimicking activity of black phosphorus quantum dots (BP QDs). The BP QDs were synthesized through a thermal exfoliation method and characterized using various techniques. The BP QDs exhibit oxidase-mimicking catalytic activity on dissolved oxygen-mediating oxidation of 3,3',5,5'-tetramethylbenzidine, a typical substrate of oxidase. This results in a transformation of 3,3',5,5'-tetramethylbenzidine into its blue oxidized product, which has a visible absorption peak at 652 nm. The exposure of 365 nm light irradiation significantly accelerates the oxidase-mimicking activity of the BP QDs and speeds up the reaction efficiency. AChE can specifically catalyze the decomposition of its substrate acetylthiocholine chloride to thiocholine. Thiocholine has reducing capacity and can thus reduce the oxidase-mimicking activity of the BP QDs. As a result, the oxidation of 3,3',5,5'-tetramethylbenzidine is hindered and the blue solution becomes paler. This gives a linear response for AChE ranging from 0.5 to 10.0 mU mL-1 and a detection limit of 0.17 mU mL-1. The assay was successfully applied to evaluate inhibitor screening with neostigmine as the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.