Abstract

This study numerically investigates the light absorption of a plasmonic photocatalyst in the circular plane waveguide of a photocatalytic spinning disk reactor. The degradation of methyl orange (MO) in water with a dual light source spinning disk reactor (DL-SDR) and embedded diffusion coupler demonstrates the plasmonic photocatalytic reaction. When light propagates in the circular plane disk (CPD) waveguide of a DL-SDR, it gradually loses energy because of the absorption of the photocatalyst. This absorption boosts the processing efficiency of the plasmonic photocatalytic reaction. A real case by a diffusion coupler was used to present the plasmonic photocatalytic reaction. This study presents the numerical analysis of a secondary optical lens (SOL) coupler and the numerical evaluation of light absorption of the plasmonic photocatalyst in a DL-SDR. An elliptical reflector collects the light emitted from the circular ring edge of the SOL and CPD. This study presents an evaluation method that simulates the light absorption of a photocatalyst coating on the CPD of a DL-SDR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.