Abstract

In this work we apply a joint experimental and theoretical approach to investigate thin films of side chain substituted dicyanovinyl quaterthiophenes (DCV4T-Et2) and DCV4T-Et2:C60 blends, prototypic absorbers for small molecule organic solar cells. Structural characterization of the morphology of thin films thermally deposited at different substrate temperatures on a silica surface was performed by variable angle spectroscopic ellipsometry, grazing incidence X-ray diffraction, and atomic force microscopy measurements. These methods, combined with full-atomistic molecular dynamic (MD) simulation, provide detailed information about thin film morphology, namely about molecular orientation, absorption, phase separation, and crystallinity, i.e., factors that affect the efficiency of organic solar cells. Using molecular dynamics simulation, we can constitute why the DCV4T-Et2 molecules arrange strongly tilted in pristine (69° to 70° tilt angle to the substrate normal) and DCV4T-Et2:C60 blend films (tilt angle o...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call