Abstract
Pyrocumulonimbus (pyroCb) firestorm systems have been shown to inject significant amounts of black carbon (BC) to the stratosphere with a residence time of several months. Injected BC warms the local stratospheric air, consequently perturbing transport and hence spatial distributions of ozone and water vapor. A distinguishing feature of BC-containing particles residing within pyroCb smoke is their thick surface coatings made of condensed organic matter. When coated with non-refractory materials, BC’s absorption is enhanced, yet the absorption enhancement factor (Eabs) for pyroCb BC is not well constrained. Here, we perform particle-scale measurements of BC mass, morphology, and coating thickness from inside a pyroCb cloud and quantify Eabs using an established particle-resolved BC optics model. We find that the population-averaged Eabs for BC asymptotes to 2.0 with increasing coating thickness. This value denotes the upper limit of Eabs for thickly coated BC in the atmosphere. Our results provide observationally constrained parameterizations of BC absorption for improved radiative transfer calculations of pyroCb events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.