Abstract

In recent years, bladder cancer has been a serious health concern around the world. As a rapidly growing imaging technique, photoacoustic imaging (PAI) was now being explored as an alternative for bladder imaging due to its non-invasive and non-ionizing nature. It was essential to know absorbed light distribution in bladder tissue which would influence the imaging depth and range of PAI. In the paper, optical model of human bladder was established, in which diffused light source was delivered through the urethra into the bladder cavity for endoscopic illumination. And Monte Carlo simulation method was adopted to calculate the light absorption distribution (LAD) in the bladder tissue. The shape and wavelength of light source were investigated in the simulation. The relevant conclusions would be significant for optimizing the light illumination in a PAI system for bladder cancer detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.