Abstract
This paper describes an investigation into how combined carbon nanotube doping and surface nanostructuring affects the surface properties of polystyrene. Multiwall carbon nanotubes (MWCNTs) have unique anisotropic electrical properties that can be utilized for light absorption, electromagnetic shielding and nanoscale electostatic forces. Polystyrene was doped with 5 wt% MWCNTs and the resulting composite was wetted onto a porous anodic alumina template to form a nanostructure surface of nanotubes. Scanning electron microscopy revealed a hierarchical surface structure with the composite nanotubes bundled together as the MWCNTs increased the attractive forces between the composite nanotubes. Water droplet testing revealed that this hierarchical surface structure was superhydrophobic. Though the presence of the MWCNTs caused a direct increase in absorption, the hierarchical surface structure increased reflection. The addition of 5 wt% of the anionic surfactant Sodium Dodecyl Benzene Sulfonate to ensure MWCNT dispersal did not significantly change hydrophobicity or light absorption despite the hierarchical surface structure becoming finer. The created composite has potential use as a surface layer on an organic surface cell as it provides reduced cleaning needs and electrical disturbance but further work is required to reduce the reflection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nanotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.