Abstract

This study aimed to characterize the functional and morphologic changes in a murine model of ocular ischemic disease caused by vascular occlusion. Retinal ischemia was induced by unilateral ligation of the pterygopalatine artery (PPA) and the external carotid artery (ECA) in anesthetized mice. Changes in ocular blood flow and retinal circulation were evaluated by three different methods: laser speckle blood flow imaging, fundus imaging, and fluorescein isothiocyanate angiography. Five days after reperfusion following 3- or 5-hour ischemia, an electroretinogram (ERG) was recorded, and the retinal histology was examined and quantified. The effects of a free radical scavenger, edaravone, using the model were evaluated by ERG and histologic analysis. The ligation of both the PPA and the ECA significantly reduced ocular blood flow and narrowed the blood vessels. Five hours of ischemia reduced the a-wave, b-wave, and oscillatory potential amplitudes of the ERG. The number of cells in the ganglion cell layer and the thickness of both the inner plexiform layer and the inner nuclear layer were reduced in the ischemic group. Retinal ischemia caused an increase in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the inner layer after 21-hour reperfusion following 3-hour ischemia and 19-hour reperfusion following 5-hour ischemia. Edaravone (1 mg/kg, administered intraperitoneally) significantly reduced the retinal ischemic damage. These findings indicate that the murine model in which both the PPA and the ECA are ligated may be useful to clarify the pathologic mechanisms of retinal ischemic diseases and to evaluate neuroprotective drugs that target retinal ischemic injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call