Abstract

The development of vaccines against fungi and other intracellular microbes is impeded in part by a lack of suitable adjuvants. While most current vaccines against infectious diseases preferentially induce production of antibodies, cellular immunity is essential for the resolution of fungal infections. Microbes such as fungi and Mycobacterium tuberculosis require Th17 and Th1 cells for resistance, and engage the C-type lectin receptors including Dectin-2. Herein, we discovered a novel Dectin-2 ligand, the glycoprotein Blastomyces Eng2 (Bl-Eng2). Bl-Eng2 triggers robust signaling in Dectin-2 reporter cells and induces IL-6 in human PBMC and BMDC from wild type but not Dectin-2-/- and Card9-/- mice. The addition of Bl-Eng2 to a pan-fungal subunit vaccine primed large numbers of Ag-specific Th17 and Th1 cells, augmented activation and killing of fungi by myeloid effector cells, and protected mice from lethal fungal challenge, revealing Bl-Eng2’s potency as a vaccine adjuvant. Thus, ligation of Dectin-2 by Bl-Eng-2 could be harnessed as a novel adjuvant strategy to protect against infectious diseases requiring cellular immunity.

Highlights

  • Fungal disease remains a challenging clinical and public health problem

  • Ag-specific CD4+ T cells play the major role in fungal resistance [4,5], as evidenced by the high incidence of lifethreatening fungal infections in patients with impaired CD4+ T cells

  • B. dermatitidis vaccine yeast are bound by soluble Dectin-2 fusion protein and trigger NFAT signaling of Dectin-2 reporter cells [19]

Read more

Summary

Introduction

Fungal disease remains a challenging clinical and public health problem. Despite medical advances, invasive fungal infections have skyrocketed over the last decade and pose a mounting health threat in immune-competent and -deficient hosts with worldwide mortality rates ranking 7th, even ahead of tuberculosis [1,2]. The development of safe, effective vaccines remains a major hurdle for fungi. Critical barriers to progress include the lack of defined fungal antigens (Ags) and suitable adjuvants that together exert protective immunity. Recent strides in our understanding of fungal immunity and discovery of fungal Ags have raised the prospect that vaccines against fungi can be developed to elicit lasting protective immunity if suitable adjuvants are available. Ag-specific CD4+ T cells play the major role in fungal resistance [4,5], as evidenced by the high incidence of lifethreatening fungal infections in patients with impaired CD4+ T cells. Since CD4+ T cells are germane to host defense against fungi, the challenge is how best to elicit these T cells

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.