Abstract
The kinetics of ammonia ligation to atomic first and second row transition metal cations were measured in an attempt to assess the role of ligand field effects in gas-phase ion-molecule reaction kinetics. Measurements were performed at 295 ± 2 K in helium bath gas at 0.35 Torr using an inductively coupled plasma/selected-ion flow tube tandem mass spectrometer. The atomic cations were produced at ca. 5500 K in an inductively coupled plasma source and were allowed to decay radiatively and to thermalize by collisions with argon and helium atoms prior to reaction. A strong correlation was observed across the periodic table between the measured rate coefficients for ammonia ligation and measured/calculated bond dissociation energies. A similar strong correlation is seen with the ligand field stabilization energy. So ligand field stabilization energies should provide a useful predictor of relative rates of ligation of atomic metal ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European journal of mass spectrometry (Chichester, England)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.