Abstract
In this study, we uncover a ligation-free DNA extension method in two adjacent fragmented probes, which are hybridized to target RNA, for developing a ligation-free nucleic acid amplification reaction. In this reaction, DNA elongation occurs from a forward probe to a phosphorothioated-hairpin probe in the presence of target RNA regardless of ligation. The second DNA elongation then occurs simultaneously at the nick site of the phosphorothioated probe and the self-priming region. Therefore, the binding site of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) 12a is repeatedly amplified, inducing a fluorescence signal in the presence of CRISPR-Cas12a. This ligation-free isothermal gene amplification method enables the detection of target RNA with 49.2 fM sensitivity. Moreover, two types of mRNA detection are feasible, thus, demonstrating the potential of this method for cancer companion diagnostics. Notably, the proposed method also demonstrates efficacy when applied for the detection of mRNA extracted from human cells and tumor-bearing mouse tissue and urine samples. Hence, this newly developed ligation-free isothermal nucleic acid amplification system is expected to be widely used in a variety of gene detection platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.