Abstract

A wide range of low oxidation state aluminum-containing cluster anions, LAln- (n = 1-14, L = N[Si(Me)3]2), were produced via reactions between aluminum cluster anions and hexamethyldisilazane (HMDS). These clusters were identified by mass spectrometry, with a few of them (n = 4, 6, and 7) further characterized by a synergy of anion photoelectron spectroscopy and density functional theory (DFT) based calculations. As compared to a previously reported method which reacts anionic aluminum hydrides with ligands, the direct reactions between aluminum cluster anions and ligands promise a more general synthetic scheme for preparing low oxidation state, ligated aluminum clusters over a large size range. Computations revealed structures in which a methyl-group of the ligand migrated onto the surface of the metal cluster, thereby resulting in "two metal-atom" insertion between Si-CH3 bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.