Abstract
We have recently reported that cytostatic concentrations of the microsomal antiestrogen-binding site (AEBS) ligands, such as PBPE (N-pyrrolidino-(phenylmethyphenoxy)-ethanamine,HCl) and tamoxifen, induced differentiation characteristics in breast cancer cells through the accumulation of post-lanosterol intermediates of cholesterol biosynthesis. We show here that exposure of MCF-7 (human breast adenocarcinoma cell line) cells to higher concentrations of AEBS ligands triggered active cell death and macroautophagy. Apoptosis was characterized by Annexin V binding, chromatin condensation, DNA laddering and disruption of the mitochondrial functions. We determined that cell death was sterol- and reactive oxygen species-dependent and was prevented by the antioxidant vitamin E. Macroautophagy was characterized by the accumulation of autophagic vacuoles, an increase in the expression of Beclin-1 and the stimulation of autophagic flux. We established that macroautophagy was sterol- and Beclin-1-dependent and was associated with cell survival rather than with cytotoxicity, as blockage of macroautophagy sensitized cells to AEBS ligands. These results show that the accumulation of sterols by AEBS ligands in MCF-7 cells induces apoptosis and macroautophagy. Collectively, these data support a therapeutic potential for selective AEBS ligands in breast cancer management and shows a mechanism that explains the induction of autophagy in MCF-7 cells by tamoxifen and other selective estrogen receptor modulators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.