Abstract

Ligands for the allosteric site of acetylcholine M2 receptors are able to retard the dissociation of simultaneously bound ligands for the orthosteric site. This effect promotes receptor occupation by the orthosteric ligand. The allosteric effect opens various therapeutic perspectives, e.g., in organophosphorus poisoning. The aim of our studies was to optimize the affinity of the modulators for the common allosteric binding site of muscarinic M2 receptors, the orthosteric site of which was liganded with the N-methylscolopamine. The phthalimido substituted hexane-bisammonium compound W84 served as a starting point. Previous molecular modelling studies revealed two positive charges and two aromatic imides in a sandwich-like arrangement to be essential for a high allosteric potency. A three-dimensional quantitative structure activity relationship (3D QSAR) analysis predicted compounds with substituents of increasing size on the lateral imide moieties to enhance the affinity for the allosteric binding site. Thus, we synthesized and pharmacologically evaluated compounds bearing “saturated” phthalimide moieties as well as phthalimidines with substituents of systematically increasing size in position 3 or on the aromatic ring at one or both ends of the molecule. Within each series, QSAR could be derived: 1. “Saturation” of the aromatic ring of the phthalimide moiety results in less potent compounds. 2. Increasing the size of the substituents in position 3 of the phthalimide enhances the potency. 3. Putting substituents on the aromatic part of the phthalimide increases the potency more effectively: the introduction of a methyl group in position 5 gave a compound with a potency in the nanomolar concentration range which was subsequently developed as the first radioligand for the allosteric binding site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.