Abstract

The multiple bonds between actinide atoms and their derivatives are computationally investigated extensively and compounds with an unsupported actinide-actinide bond, especially in low oxidation states, have attracted great attention. Herein, high level relativistic quantum chemical methods are used to probe the Ac-Ac bonding in compounds with a general formula LAcAcL (L = AsH3, PH3, NH3, H, CO, NO) at both scalar and spin-orbit coupling relativistic levels. H3AsAcAcAsH3, H3PAcAcPH3 and OCAcAcCO compounds show a type of zero valence Ac[triple bond, length as m-dash]Ac triple bond with a 1σ2g1π4u configuration, and H3AsAcAcAsH3 has been found to have the shortest Ac-Ac bond length of 3.012 Å reported so far. The Ac2 unit is very sensitive to the σ donor ligands and can form triple, double and even single bonds when suitable ligands are introduced, up to 3.652 Å with an Ac-Ac single bond in H3NAcAcNH3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call