Abstract
ABSTRACTLigandless, task-specific ionic liquid based ultrasound-assisted dispersive liquid–liquid microextraction (TSIL-USA-DLLME) was used for preconcentration of cobalt ions in food and water samples and in vitamin supplements before analysis by electrothermal atomic absorption spectrometry. The reported method is free of toxic volatile organic solvents and does not require the use of a back-extraction step. The dispersion of extractant was achieved with the use of ultrasound. A TSIL, trioctylmethylammonium thiosalicylate (TOMATS), was served as both the extraction and complexing agent. After microextraction, the TOMATS phase was separated by centrifugation and dissolved in ethanol before analysis. Selected parameters affecting the microextraction including the pH of the sample, the volume of the ionic liquid, the ultrasonication time, centrifugation parameters, and the influence of ionic strength were optimized. The limit of detection was 0.011 ng mL−1 for cobalt ions. The achieved preconcentration factor was 24. The relative standard deviations for the determination of analyte in the real samples were 3–24%. The accuracy of this method was evaluated by the extraction and determination of the analyte in several certified reference materials including INCT-SBF-4 (soya bean flour), INCT-TL-1 (tea leaves), ERM-CAO11b (hard drinking water), INCT-MPH-2 (mixed Polish herbs), TMDA-54.5 (Lake Ontario Water), and NIST 1643e. The measured cobalt contents were in satisfactory agreement with the certified concentrations based on Student’s t-test at the 95% confidence level. The presented method has been successfully applied for the determination of analyte in real samples that include tea, lake water, and vitamin supplements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.