Abstract

Cyclic AMP receptor protein (CRP) regulates the expression of a large number of genes in E. coli. It is activated by cAMP binding, which leads to some yet undefined conformational changes. These changes do not involve significant redistribution of secondary structures. A potential mechanism of activation is a ligand-induced change in structural dynamics. Hence, the cAMP-mediated conformational and structural dynamics changes in the wild-type CRP were investigated using hydrogen-deuterium exchange and Fourier transform infrared spectroscopy. Upon cAMP binding, the two functional domains within the wild-type CRP undergo conformational and structural dynamics changes in two opposite directions. While the smaller DNA-binding domain becomes more flexible, the larger cAMP-binding domain shifts to a less dynamic conformation, evidenced by a faster and a slower amide H-D exchange, respectively. To a lesser extent, binding of cGMP, a nonfunctional analogue of cAMP, also stabilizes the cAMP-binding domain, but it fails to mimic the relaxation effect of cAMP on the DNA-binding domain. Despite changes in the conformation and structural dynamics, cAMP binding does not alter significantly the secondary structural composition of the wild-type CRP. The apparent difference between functional and nonfunctional analogues of cAMP is the ability of cAMP to effect an increase in the dynamic motions of the DNA binding domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.