Abstract
Functionally active gamma interferon (IFN-gamma) receptors consist of an alpha subunit required for ligand binding and signal transduction and a beta subunit required primarily for signaling. Although the receptor alpha chain has been well characterized, little is known about the specific role of the receptor beta chain in IFN-gamma signaling. Expression of the wild-type human IFN-gamma receptor beta chain in murine L cells that stably express the human IFN-gamma receptor alpha chain (L.hgR) produced a murine cell line (L.hgR.myc beta) that responded to human IFN-gamma. Mutagenesis of the receptor beta-chain intracellular domain revealed that only two closely spaced, membrane-proximal sequences (P263PSIP267 and I270EEYL274) are required for function. Coprecipitation studies showed that these sequences are necessary for the specific and constitutive association of the receptor beta chain with the JAK-2 tyrosine kinase. These experiments also revealed that the IFN-gamma receptor alpha and beta chains are not preassociated on the surface of unstimulated cells but rather are induced to associate in an IFN-gamma-dependent fashion. A chimeric protein in which the intracellular domain of the beta chain was replaced by JAK-2 complemented human IFN-gamma signaling and biologic responsiveness in L.hgR. In contrast, a c-src-containing beta-chain chimera did not. These results indicate that the sole obligate role of the IFN-gamma receptor beta chain in signaling is to recruit JAK-2 into the ligand-assembled receptor complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.