Abstract

Supramolecular pi-stack architecture is fundamental in DNA chemistry but absent in biological and synthetic ion channels and pores. Here, a novel rigid-rod pi-stack architecture is introduced to create synthetic ion channels with characteristics that are at the forefront of rational design, that is, ligand gating by a conformational change of the functional supramolecule. Namely, the intercalation of electron-rich aromatics is designed to untwist inactive electron-poor helical pi-stacks without internal space into open barrel-stave ion channels. Conductance experiments in planar lipid bilayers corroborate results from spherical bilayers and molecular modeling: Highly cooperative and highly selective ligand gating produces small, long-lived, weakly anion selective, ohmic ion channels. Structural studies conducted under conditions relevant for function provide experimental support for helix-barrel transition as origin of ligand gating. Control experiments demonstrate that minor structural changes leading to internal decrowding suffice to cleanly annihilate chiral self-organization and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.