Abstract
Cerebellar granule cells express six GABAA receptor subunits abundantly (alpha1, alpha6, beta2, beta3, gamma2, and delta) and assemble various pentameric receptor subtypes with unknown subunit compositions; however, the rules guiding receptor subunit assembly are unclear. Here, removal of intact alpha6 protein from cerebellar granule cells allowed perturbations in other subunit levels to be studied. Exon 8 of the mouse alpha6 subunit gene was disrupted by homologous recombination. In alpha6 -/- granule cells, the delta subunit was selectively degraded as seen by immunoprecipitation, immunocytochemistry, and immunoblot analysis with delta subunit-specific antibodies. The delta subunit mRNA was present at wild-type levels in the mutant granule cells, indicating a post-translational loss of the delta subunit. These results provide genetic evidence for a specific association between the alpha6 and delta subunits. Because in alpha6 -/- neurons the remaining alpha1, beta2/3, and gamma2 subunits cannot rescue the delta subunit, certain potential subunit combinations may not be found in wild-type cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.