Abstract

A cost-effective and high-efficiency photoelectrochemical (PEC) water splitting system based on colloidal quantum dots (QDs) represents a potential solar-to-hydrogen (STH) conversion technology to achieve future carbon neutrality. Herein, a self-biased PEC cell consisting of BiVO4 photoanode and Cu2 O photocathode both decorated with Zn-doped CuInS2 (ZCIS) QDs is successfully fabricated. The intrinsic charge dynamics of the photoelectrodes are efficiently optimized via rational engineering of the surface ligands capped on QDs with controllable chain lengths and binding affinities to the metal oxide electrodes. It is demonstrated that the short-chain monodentate 1-dodecanethiol ligands are beneficial to ZCIS QDs for suppressing charge recombination, which enables the construction of tight heterojunction with coupled metal oxide electrodes, leading to effective photo-induced charge transfer/injection for enhanced PEC performance. The QD decorated BiVO4 and Cu2 O photoelectrodes in pairs demonstrate a self-biased PEC water splitting process, delivering an STH efficiency of 0.65% with excellent stability under AM 1.5 G one-sun illumination. The results highlight the significance of synergistic ligand and heterojunction engineering to build highly efficient and robust QDs-based PEC devices for self-biased solar water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.