Abstract

We have studied intercalation of ethidium bromide (EB) to genomic DNA encapsulated in a nanospace of an anionic AOT reverse micelle (RM). Circular dichroism (CD) study on the DNA in the RM reveals its condensed form. Here, we have used temporal decay-associated spectra (DAS) and time-resolved area normalized emission spectral (TRANES) techniques to investigate EB-binding to condensed DNA because the interference of emission from unbound EB in the RM makes conventional steady state and picosecond resolved fluorescence spectroscopic techniques challenging. The binding affinity of the ligand EB with the DNA in the RM is found to increase with the size of the RM, reflecting the effect of lessening of DNA condensation on the binding affinity. CD spectra of the DNA in the RM with various sizes indicate the structural change of the condensed DNA with reverse micellar size. DAS and TRANES techniques along with dynamic light scattering studies of the EB-DNA complex in the RM further reveal two kinds of binding modes of the ligand with the condensed DNA even in essentially monodispersed RMs. To investigate the role of RM on the ligand binding and secondary structure of the DNA, we have also studied complexation of EB with two synthetic self-complimentary oligonucleotides of sequences (CGCAAATTTGCG)2 and (CGCGCGCGCGCG)2 in the RM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.