Abstract

AbstractAn NMR‐based approach to characterizing the binding kinetics of ligand molecules to biomolecules, like RNA or proteins, by ligand‐detected Carr‐Purcell‐Meiboom‐Gill (CPMG) relaxation dispersion experiments is described. A 15N‐modified preQ1 ligand is used to acquire relaxation dispersion experiments in the presence of low amounts of the Fsu class I preQ1 aptamer RNA, and increasing ligand concentrations to probe the RNA small molecule interaction. Our experimental data strongly support the conformational selection mechanism postulated. The approach gives direct access to two parameters of a ligand–receptor interaction: the off rate and the population of the small molecule–receptor complex. A detailed description of the kinetics underlying the ligand binding process is of crucial importance to fully understanding a riboswitch’s function and to evaluate potential new antibiotics candidates targeting the noncoding RNA species. Ligand‐detected NMR relaxation dispersion experiments represent a valuable diagnostic tool for the characterization of binding mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.