Abstract

We report herein a highly efficient palladium-catalyzed carbene insertion into strained Si-C bonds of benzosilacyclobutanes, which provides an efficient method to access α-chiral silanes. With a sterically hindered ligand, carbene insertion into the C(sp3 )-Si bond of benzosilacyclobutanes occurred in excellent site- and enantioselectivity, while C(sp2 )-Si bond insertion occurred selectively with less sterically hindered ligands. Reaction mechanism, in particular the roles of the chiral ligands in controlling the site-selectivity of the insertion reactions, are elucidated by using hybrid density functional theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.