Abstract
Since its first crystallization, the aqueous structure of the tellurium-containing experimental drug AS-101 has never been studied. We show that, under the aqueous conditions in which it is administered, AS-101 is subjected to an immediate ligand-substitution reaction with water, yielding a stable hydrolyzed oxide anion product that is identified, for the first time, to be TeOCl3-. Studying the structure of AS-101 in propylene glycol (PG), an alcoholic solvent often used for the topical and oral administration of AS-101, revealed the same phenomenon of ligand-substitution reaction between the alcoholic ligands. Upon exposure to water, the PG-substituted product is also hydrolyzed to the same tellurium(IV) oxide form, TeOCl3-.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.