Abstract

AbstractNear‐infrared light‐emitting diodes (NIR LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiency (EQE) of ~15 %. However, these high‐performance NIR‐QLEDs suffer from immediate carrier quenching because of the accumulation of migratable ions at the surface of the QDs. These uncoordinated ions and carriers—if not bound to the nanocrystal surface—serve as centers for exciton quenching and device degradation. In this work, we overcome this issue and fabricate high‐performance NIR QLEDs by devising a ligand anchoring strategy, which entails dissolving the strong‐binding ligand (Guanidine Hydroiodide, GAI) in the mediate‐polar solvent. By employing the dye‐sensitized device structure (phosphorescent indicator), we demonstrate the elimination of the interface defects. The treated QDs films exhibit an exciton binding energy of 117 meV: this represents a 1.5‐fold increase compared to that of the control (74 meV). We report, as a result, the NIR QLEDs with an EQE of 21 % which is a record among NIR perovskite QLEDs. These QLEDs also exhibit a 7‐fold higher operational stability than that of the best previously reported NIR QLEDs. Furthermore, we demonstrate that the QDs are compatible with large‐area QLEDs: we showcase 900 mm2 QLEDs with EQE approaching 20 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.