Abstract

Understanding the origin of the photoluminescence (PL) phenomenon in ligand-protected metal nanoclusters is of paramount importance in both fundamental science and practical applications. In this study, we have studied the origin of fluorescence emission of two thiolate-ligand-protected Au28 clusters (Au28(CHT)20 and Au28(TBBT)20) by means of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Theoretical calculation results show that the ligand shell isomerization induces different ligand motif-to-metal core charge transfers (LMCT) of Au28(TBBT)20 and Au28(CHT)20. Moreover, in Au28(CHT)20, the emission process of S2 → S0 can compete favorably with the internal conversion of S2 → S1. Furthermore, the high quantum yield of Au28(CHT)20 is attributed to its high symmetric structure, which leads to less energy dissipation during the structural relaxation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call