Abstract
Ligand noninnocence occurs for complexes composed of redox-active ligands and metals, with frontier orbitals of similar energy. Usually methods of analysis can be used to define the charge distribution, and cases where the metal oxidation state and ligand charge are unclear are unusual. Ligands derived from o-benzoquinones can bond with metals as radical semiquinonates (SQ(•-)) or as catecholates (Cat(2-)). Spectroscopic, magnetic, and structural properties can be used to assess the metal and ligand charges. With the redox activity at both the metal and ligands, reversible multicomponent redox series can be observed using electrochemical methods. Steps in the series may occur at either the ligand or metal, and ligand substituent effects can be used to tune the range of ligand-based redox steps. Complexes that appear as intermediates in a ligand-based redox series may contain both SQ and Cat ligands "bridged" by the metal as mixed-valence complexes. Properties reflect the strength of metal-mediated interligand electronic coupling in the same way that ligand-bridged bimetallics conform to the Robin and Day classification scheme. In this review, we will focus specifically on complexes of first-row transition-metal ions coordinated with three ligands derived from tetrachloro-1,2-benzoquinone (Cl(4)BQ). The redox activity of this ligand overlaps with the potentials of common metal oxidation states, providing examples of metal- and ligand-based redox activity, in some cases, within a single redox series. The strength of the interligand electronic coupling is important in defining the separation between ligand-based couples of a redox series. The complex of ferric iron will be described as an example where coupling is weak, and the steps associated with the Fe(III)(Cl(4)SQ)(3)/[Fe(III)(Cl(4)Cat)(3)](3-) redox series are observed over a narrow range in electrochemical potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.