Abstract

The β3-adrenoceptor agonist mirabegron is available for the treatment of storage symptoms of overactive bladder, including frequency, urgency, and incontinence. The off-target effects of mirabegron include binding to α1-adrenoceptors, which are central in the treatment of voiding symptoms. Here, we examined the structure–function relationships in the binding of mirabegron to a cryo-electron microscopy structure of α1A. The binding was simulated by docking mirabegron to a 3D structure of a human α1A-adrenoceptor (7YMH) using Autodock Vina. The simulations identified two binding states: slope orientation involving 10 positions and horizontal binding to the receptor surface involving 4 positions. No interactions occurred with positions constituting the α1A binding pocket, including Asp-106, Ser-188, or Phe-312, despite the positioning of the phenylethanolamine moiety in transmembrane regions close to the binding pocket by contact with Phe-288, -289, and Val-107. Contact with the unique positions of α1A included the transmembrane Met-292 during slope binding and exosite Phe-86 during horizontal binding. Exosite binding in slope orientation involved contact of the anilino part, rather than the aminothiazol end, to Ile-178, Ala-103, and Asn-179. In conclusion, contact with Met-292 and Phe-86, which are unique positions of α1A, accounts for mirabegron binding to α1A. Because of its lack of interactions with the binding pocket, mirabegron has lower affinity compared to α1A-blockers and no effects on voiding symptoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call