Abstract

The pathways for ligand entry and exit in myoglobin have now been well established by a wide variety of experimental results, including pico- to nano- to microsecond transient absorbance measurements and time-resolved X-ray crystallographic measurements. Trp insertions have been used to block, one at a time, the three major cavities occupied by photodissociated ligands. In this work, we review the effects of the L29(B10)W mutation, which places a large indole ring in the initial 'docking site' for photodissociated ligands. Then, the effects of blocking the Xe4 site with I28W, V68W, and I107W mutations and the Xe1 cavity with L89W, L104W, and F138W mutations are described. The structures of four of these mutants are shown for the first time (Trp28, Trp68, Trp107, and Trp 138 sperm whale metMb). All available results support a 'side path' mechanism in which ligands move into and out of myoglobin by outward rotation of the HisE7 side chain, but after entry can migrate into internal cavities, including the distal Xe4 and proximal Xe1 binding sites. The distal cavities act like the pocket of a baseball glove, catching the ligand and holding it long enough for the histidine gate to close and facilitate internal coordination with the heme iron atom. The physiological role of the proximal Xe1 site is less clear because changes in the size of this cavity have minimal effects on overall O(2) binding parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.