Abstract
Currently there is considerable interest in creating ordered arrays of adhesive protein islands in a sea of passivated surface for cell biological studies. In the past years, it has become increasingly clear that living cells respond, not only to the biochemical nature of the molecules presented to them but also to the way these molecules are presented. Creating protein micro-patterns is therefore now standard in many biology laboratories; nano-patterns are also more accessible. However, in the context of cell-cell interactions, there is a need to pattern not only proteins but also lipid bilayers. Such dual proteo-lipidic patterning has so far not been easily accessible. We offer a facile technique to create protein nano-dots supported on glass and propose a method to backfill the inter-dot space with a supported lipid bilayer (SLB). From photo-bleaching of tracer fluorescent lipids included in the SLB, we demonstrate that the bilayer exhibits considerable in-plane fluidity. Functionalizing the protein dots with fluorescent groups allows us to image them and to show that they are ordered in a regular hexagonal lattice. The typical dot size is about 800 nm and the spacing demonstrated here is 2 microns. These substrates are expected to serve as useful platforms for cell adhesion, migration and mechano-sensing studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.