Abstract

Using a novel tricompartmental hydrazone ligand, a set of trinuclear Dy3 complexes has been isolated and structurally characterized. Complexes Dy3 ⋅ Cl, Dy3 ⋅ Br, and Dy3 ⋅ ClO4 feature a similar overall topology but different anions (Cl- , Br- , or ClO4 - ) in combination with exogenous OH- and solvent co-ligands, which is found to translate into very different magnetic properties. Complex Dy3 ⋅ Cl shows a double relaxation process with fast quantum tunneling of the magnetization, probably related to the structural disorder of μ2 -OH- and μ2 -Cl- co-ligands. Relaxation of the magnetization is slowed down for Dy3 ⋅ Br and Dy3 ⋅ ClO4 , which do not show any structural disorder. In particular, fast quantum tunneling is suppressed in case of Dy3 ⋅ ClO4 , resulting in an energy barrier of 341 K and magnetic hysteresis up to 3.5 K; this makes Dy3 ⋅ ClO4 one of the most robust air-stable trinuclear SMMs. Magneto-structural relationships of the three complexes are analyzed and rationalized with the help of CASSCF/RASSI-SO calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call