Abstract

Nanocrystalline (anatase), mesoporous TiO2 thin films were derivatized with [Ru(bpy)2(deebq)](PF6)2 or [Os(bpy)2(deebq)](PF6)2, where bpy is 2,2'-bipyridine and deebq is 4,4'-diethylester-2,2'-biquinoline. Both compounds bind to the nanocrystalline TiO2 films with typical limiting surface coverages of 7 (+/-2) x 10-8 mol/cm2. Electrochemical measurements show that the first reduction of these compounds (-0.60 V vs SCE) occurs prior to TiO2 reduction. Steady-state illumination in the presence of the sacrificial electron donor triethylamine leads to the appearance of the reduced compound, MII(deebq-)(bpy)2+/TiO2. Neither the photoluminescent excited states or the reduced forms of these compounds inject electrons efficiently into TiO2. Transient absorption measurements after a approximately 10-ns laser pulse, reveal greater than 80% MLCT excited states and a smaller fraction of extremely long-lived charge-separated state intermediates assigned to equal concentrations of MII(deebq-)(bpy)2+/TiO2 and MIII(deebq)(bpy)23+/TiO2. The results are consistent with a mechanism of ultrafast electron injection followed by ligand-localized trapping on a second compound. The quantum yield for formation of the charge-separated states (phiCSS) is excitation wavelength dependent. With 417 nm excitation, phiCSS(417) = 0.14 +/- 0.03, and this decreases with 532.5 nm excitation, phiCSS(532.5) = 0.08 +/- 0.03, and 683 nm excitation for M = Os, phiCSS(683) = 0.05 +/- 0.01. Electron transfer to yield ground-state products, MII(deebq-)(bpy)2+/TiO2 + MIII(deebq)(bpy)23+/TiO2 --> 2 MII(deebq)(bpy)22+/TiO2, occurs with a driving force of 2.05 eV for Ru/TiO2 and 1.64 eV for Os/TiO2. The dynamics of this process were quantified on a millisecond time scale and were found to follow second-order kinetics. The intermediates are sufficiently long-lived that continued pulsed excitation at 10 Hz leads to high concentrations and the formation of transient images on the semiconductor surface that are easily observed by the naked eye.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call