Abstract

Binding thermodynamics and kinetics play critical roles in drug design. However, it has proven challenging to efficiently predict ligand binding thermodynamics and kinetics of small molecules and flexible peptides using conventional molecular dynamics (cMD), due to limited simulation time scales. Based on our previously developed ligand Gaussian accelerated molecular dynamics (LiGaMD) method, we present a new approach, termed "LiGaMD3″, in which we introduce triple boosts into three individual energy terms that play important roles in small-molecule/peptide dissociation, rebinding, and system conformational changes to improve the sampling efficiency of small-molecule/peptide interactions with target proteins. To validate the performance of LiGaMD3, MDM2 bound by a small molecule (Nutlin 3) and two highly flexible peptides (PMI and P53) were chosen as the model systems. LiGaMD3 could efficiently capture repetitive small-molecule/peptide dissociation and binding events within 2 μs simulations. The predicted binding kinetic constant rates and free energies from LiGaMD3 were in agreement with the available experimental values and previous simulation results. Therefore, LiGaMD3 provides a more general and efficient approach to capture dissociation and binding of both small-molecule ligands and flexible peptides, allowing for accurate prediction of their binding thermodynamics and kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call