Abstract

In this study, surface-functionalized, branched polyethylenimine (BPEI)-modified YVO4:Bi(3+),Eu(3+) nanocrystals (NCs) were successfully synthesized by a simple, rapid, solvent-free hydrothermal method. The BPEI-coated YVO4:Bi(3+),Eu(3+) NCs with high crystallinity show broad-band excitation in the λ=250 to 400 nm near-ultraviolet (NUV) region and exhibit a sharp-line emission band centered at λ=619 nm under excitation at λ=350 nm. The surface amino groups contributed by the capping agent, BPEI, not only improve the dispersibility and water/buffer stability of the BPEI-coated YVO4:Bi(3+),Eu(3+) NCs, but also provide a capability for specifically targeted biomolecule conjugation. Folic acid (FA) and epidermal growth factor (EGF) were further attached to the BPEI-coated YVO4:Bi(3+),Eu(3+) NCs and exhibited effective positioning of fluorescent NCs toward the targeted folate receptor overexpressed in HeLa cells or EGFR overexpressed in A431 cells with low cytotoxicity. These results demonstrate that the ligand-functionalized, BPEI-coated YVO4:Bi(3+),Eu(3+) NCs show great potential as a new-generation biological luminescent bioprobe for bioimaging applications. Moreover, the unique luminescence properties of BPEI-coated YVO4:Bi(3+),Eu(3+) NCs show potential to combine with a UVA photosensitizing drug to produce both detective and therapeutic effects for human skin cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call