Abstract

We deal with the computational determination of the electronic structure and properties of lanthanide ions in complexes and extended structures having open-shell f and d configurations. Particularly, we present conceptual and methodological issues based on Density Functional Theory (DFT) enabling the reliable calculation and description of the f → d transitions in lanthanide doped phosphors. We consider here the optical properties of the Pr(3+) ion embedded into various solid state fluoride host lattices, for the prospection and understanding of the so-called quantum cutting process, being important in the further quest of warm-white light source in light emitting diodes (LED). We use the conceptual formulation of the revisited ligand field (LF) theory, fully compatibilized with the quantum chemistry tools: LFDFT. We present methodological advances for the calculations of the Slater-Condon parameters, the ligand field interaction and the spin-orbit coupling constants, important in the non-empirical parameterization of the effective Hamiltonian adjusted from the ligand field theory. The model shows simple procedure using less sophisticated computational tools, which is intended to contribute to the design of modern phosphors and to help to complement the understanding of the 4f(n) → 4f(n-1)5d(1) transitions in any lanthanide system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.