Abstract

We examine CdSe NCs functionalized with the exciton-delocalizing ligand phenyldithiocarbamate (PDTC) using two-dimensional electronic spectroscopy (2DES). PDTC forms hybrid molecular orbitals with CdSe's valence band that relax hole spatial confinement and create potential for enhanced exciton migration in NC solids. We find PDTC broadens the intrinsic line width of individual NCs in solution by ∼30 meV, which we ascribe to modulation of NC band edge states by ligand motion. In PDTC-exchanged solids, photoexcited excitons are mobile and rapidly move to low-energy NC sites over ∼30 ps. We also find placing excitons into high-energy states can accelerate theirrate of migration by over an order of magnitude, which we attribute to enhanced spatial delocalization of these states that improves inter-NC wave function overlap. Our work demonstrates that NC surface ligands can actively facilitate inter-NC energy transfer and highlights principles to consider when designing ligands for this application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.