Abstract

We have studied the electrochemical and thermodynamic stability of Au(25)(SR)(18)(-), Au(38)(SR)(24), and Au(102)(SR)(44), R = CH(3), C(6)H(13), CH(2)CH(2)Ph, Ph, PhF, and PhCOOH, in order to examine ligand effects on the stability of thiol-stabilized gold nanoclusters, Au(m)(SR)(n). Aliphatic thiols, in general, have higher electrochemical and thermodynamic stability than aromatic thiols, and the -SCH(2)CH(2)Ph thiol is particularly appealing because of its high electrochemical and thermodynamic stability. The stabilization of Au(m) by nSR for Au(m)(SR)(n) can be rationalized by the stabilization of an Au atom by an SR for the simple molecule AuSR, regardless of interligand interaction and system size and shape. Thiol moieties play a strong role in the electron oxidation and reduction of Au(m)(SR)(n). Accounting for the characteristics of thiol ligands is essential for understanding the electronic and thermodynamic stability of thiol-stabilized gold nanoclusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.