Abstract

Photoluminescence (PL) is one of the most exciting properties of atomically precise metal nanoclusters (NCs), making them a prime choice for various applications, from sensing to bio-imaging. While there are several advantages of metal NCs for PL-based applications, their PLQY is significantly low compared to other PL-active nanomaterials or organic dyes. It is essential to understand the PL mechanism in detail to tune the PLQY of NCs. There are numerous reports on gold NCs with a known structure where the origin of PL has been explored, and it was found that ligands play a vital role in their PL properties along with the kernel (core). Reports on understanding the ligand effects on PL properties are also evolving for the case of atomically precise silver NCs. This mini-review will summarize the ligands' role in PL of 29 atom Ag NCs, the most reported NCs with diversity in the silver family. The ligands were classified as primary and secondary, and their effects on tuning the PL properties were explained. The review will also address some of the answers to open questions for AgNCs, such as the origin of PL, dynamics, and the tunability of PLQY using ligand modifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call