Abstract
1.1. Context and Meta-Review Despite the ubiquity of metallic gold (Au) in popular culture, its deployment in homogeneous catalysis has only recently undergone widespread investigation. In the past decade, and especially since 2004, great progress has been made in developing efficient and selective Au-catalyzed transformations, as evidenced by the prodigious number of reviews available on various aspects of this growing field. Hashmi has written a series of comprehensive reviews outlining the progression of Au-catalyzed reaction development,1 and a number of more focused reviews provide further insight into particular aspects of Au catalysis. A brief meta-review of the available range of perspectives published on Au catalysis helps to put this Chemical Reviews article in context. The vast majority of reactions developed with homogeneous Au catalysts have exploited the propensity of Au to activate carbon-carbon π-bonds as electrophiles. Gold has come to be regarded as an exceedingly mild, relatively carbophilic Lewis acid, and the broad array of newly developed reactions proceeding by activation of unsaturated carbon-carbon bonds has been expertly reviewed.2 Further reviews and highlights on Au catalysis focus on particular classes of synthetic reactions. An excellent comprehensive review of Au-catalyzed enyne cycloisomerizations is available.3 Even more focused highlights on hydroarylation of alkynes,4 hydroamination of C-C multiple bonds,5 and reactions of oxo-alkynes6 and propargylic esters7 provide valuable perspectives on progress and future directions in the development of homogeneous Au catalysis. Most of the reviews on Au catalysis emphasize broad or specific advances in synthetic utility. Recently, we have invoked relativistic effects to provide a framework for understanding the observed reactivity of Au catalysts, in order to complement empirical advancements.8 In this Chemical Reviews article, we attempt to enumerate the ways in which selectivity can be controlled in homogeneous Au catalysis. It is our hope that lessons to guide catalyst selection and the design of new catalysts may be distilled from a thorough evaluation of ligand, counterion, and oxidation state effects as they influence chemo-, regio-, and stereoselectivity in homogeneous Au catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.