Abstract
Two new series of neutral oxamato-bridged heterobimetallic chains of general formula [MCu(L(x))(2)] m DMSO (m=0-4) (L(1)=N-2-methylphenyloxamate, M=Mn (1 a) and Co (1 b); L(2)=N-2,6-dimethylphenyloxamate, M=Mn (2 a) and Co (2 b); L(3)=N-2,4,6-trimethylphenyloxamate, M=Mn (3 a) and Co (3 b)) have been prepared by reaction between the corresponding anionic oxamatocopper(II) complexes [Cu(Lx)2](2-) with Mn(2+) or Co(2+) cations in DMSO. The crystal structures of [CoCu(L2)2(H2O)2] (2 b') and [CoCu(L3)2(H2O)2]4 H2O (3 b') have been solved by single-crystal X-ray diffraction methods. Compounds 2 b' and 3 b' adopt zigzag and linear chain structures, respectively. The intrachain Cu...Co distance through the oxamate bridge is 5.296(1) A in 2 b' and 5.301(2) A in 3 b', while the shortest interchain Co...Co distance is 5.995(5) A in 2 b' and 8.702(3) A in 3 b', that is, the chains are well isolated in the crystal lattice due to the presence of the bulky methyl-substituted phenyl groups. Although both Mn(II)Cu(II) and Co(II)Cu(II) chains exhibit ferrimagnetic behaviour with moderately strong intrachain antiferromagnetic coupling (-J(Mn,Cu)=24.7-27.9 cm(-1) and -J(Co,Cu)=35.0-45.8 cm(-1); H= Sigma -J(M,Cu)S(M,i)S(Cu,i)), only the Co(II)Cu(II) chains show slow magnetic relaxation at low temperatures (T(B)<3.5 K), which is characteristic of single-chain magnets (SCMs) because of the high magnetic anisotropy of the Co(II) ion. The blocking temperatures T(B) along this series of chains vary according to the steric hindrance of the aromatic substituent of the oxamate ligand in the series L(1)<L(2)<L(3). Analysis of the SCM behaviour for 3 b and 3 b' on the basis of Glauber's theory for a one-dimensional Ising system showed a thermally activated mechanism for the magnetic relaxation (Arrhenius law dependence). The activation energies E(a) to reverse the magnetisation direction are 38.0 (3 b) and 16.3 cm(-1) (3 b'), while the preexponential factors tau(0) are 2.3x10(-11) (3 b) and 4.0x10(-9) s (3 b').
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.