Abstract

The mechanisms of oxidative ligand dehydrogenation in high-valent ruthenium hexaamine complexes of bidentate 1,2-ethanediamine (en) and tridentate 1,1,1-tris(aminomethyl)ethane (tame) are elucidated in detail. In basic aqueous solution, [Ru(III)(tame)(2)](3+) undergoes rapid initial deprotonation (pK(III) = 10.3). This is followed by a pH-dependent disproportionation step involving either [Ru(III)(tame)(2)-H(+)](2+) + [Ru(III)(tame)(2)](3+) (k(1d) = 8300 M(-)(1) s(-)(1)) or two singly deprotonated [Ru(III)(tame)(2)-H(+)](2+) ions (k(2d) = 3900 M(-)(1) s(-)(1)). The products are [Ru(II)(tame)(2)](2+) and either the singly deprotonated species [Ru(IV)(tame)(2)-H(+)](3+) (pK(IV) = 8.2) or the doubly deprotonated [Ru(IV)(tame)(2)-2H(+)](2+). These Ru(IV) complexes undergo spontaneous dehydrogenation to give the imine [Ru(II)(imtame)(tame)](2+) (imtame = 1,1-bis(aminomethyl)-1-(iminomethyl)ethane), with first-order rate constants of k(1im) = 320 s(-)(1) and k(2im) = 1.1 s(-)(1), respectively. In the [Ru(III)(en)(3)](3+) system, the initial deprotonation (pK(III) = 10.4) is followed by the corresponding disproportionation reactions (k(1d) = 9000 M(-)(1) s(-)(1), k(2d) = 3800 M(-)(1) s(-)(1)). The complex [Ru(IV)(en)(3)-H(+)](3+) (pK(IV) = 8.9) and its deprotonated counterpart, [Ru(IV)(en)(3)-2H(+)](2+), undergo dehydrogenation to give [Ru(II)(imen)(en)(2)](2+) (imen = 2-aminoethanimine) with first-order rate constants of k(1im) = 600 s(-)(1) and k(2im) = 1.0 s(-)(1), respectively. In the light of this analysis, the disproportionation and ligand oxidation of the [Ru(III)(sar)](3+) ion are reexamined (k(1d) = 4 x 10(7) M(-)(1) s(-)(1), k(2d) >/= 2 x 10(7) M(-)(1) s(-)(1), pK(IV) = 2.0, k(1im) = 17 s(-)(1), k(2im) = 5 x 10(-)(4) s(-)(1) at 25 degrees C). While the disproportionation to Ru(II) and Ru(IV) has been recognized in such systems, the complexity of the paths has not been realized previously; the surprising variation in the rates of the intramolecular redox reaction (from days to milliseconds) is now dissected and understood. Other facets of the intramolecular redox reaction are also analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.