Abstract

Copper(I) iodide hybrids are of interest for next-generation lighting technologies because of their efficient luminescence in the absence of rare-earth elements. Here, we report 10 structurally diverse hybrid copper(I) iodides that emit in the green–red region with quantum yields reaching 67%. The compounds display a diversity of structures including ones with one-dimensional (1D) Cu–1 chains, Cu2I2 rhomboid dimers, and structures with two different arrangements of Cu4I4 tetramers. The compounds with Cu2I2 rhomboid dimers or Cu4I4 cubane tetramers have higher photoluminescence quantum yields than those with Cu–I 1D chains and octahedral Cu4I4 tetramers, owing to the optimal degree of condensation of the inorganic motifs, which suppresses nonradiative processes. Electronic structure calculations on these compounds point out the critical influence of the inorganic motif and organic ligand on the nature of the band gaps and thus the excitation characteristics. Temperature-dependent photoluminescence spectra are presented to better understand the nature of luminescence in compounds with different inorganic motifs. The emerging understanding of composition–structure–property correlations in this family provides inspiration for the rational design of hybrid phosphors for general lighting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.