Abstract

The heterogeneous distribution of endothelial cell adhesion molecules (ECAMs) on the lumenal surface of vascular endothelium provides an opportunity to deliver drugs to select tissues. The targeting could be achieved by using carriers whose outer surface has a ligand for a selectively expressed ECAM. The carriers would interact with the endothelium in a fluid dynamic environment and in many of these schemes nanoparticles would be used. It is unclear what role various parameters (e.g., ligand-ECAM chemistry, fluid shear) will have on the adhesion of the nanoparticles to the endothelium. To facilitate studies in this area, we have developed a prototypical in vitro model that allows investigation of nanoparticle adhesion. We coated polystyrene nanospheres with a humanized mAb (HuEP5C7.g2) that recognizes the ECAMs E- and P-selectin. Adhesion assays revealed that HuEP5C7.g2 nanospheres exhibit augmented, specific adhesion to selectin presenting cellular monolayers and that the adhesion can be affected by the fluid shear. These results; (i) strongly suggest that HuEP5C7.g2 could be used to target nanoparticles to selectin presenting endothelium; (ii) demonstrate that fluid shear can affect nanoparticle adhesion; and (iii) define a system which can be used to study the effects of various system parameters on nanoparticle adhesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.