Abstract

The G protein-coupled receptor CXCR4 is a coreceptor, along with CD4, for the human immunodeficiency virus type 1 (HIV-1) and has been implicated in breast cancer metastasis. We studied the binding of the HIV-1 gp120 envelope glycoprotein (gp) to CXCR4 but found that the gp120s from CXCR4-using HIV-1 strains bound nonspecifically to several cell lines lacking human CXCR4 expression. Therefore, we constructed paramagnetic proteoliposomes (CXCR4-PMPLs) containing pure, native CXCR4. CXCR4-PMPLs specifically bound the natural ligand, SDF-1alpha, and the gp120s from CXCR4-using HIV-1 strains. Conformation-dependent anti-CXCR4 antibodies and the CXCR4 antagonist AMD3100 blocked HIV-1 gp120 binding to CXCR4-PMPLs. The gp120-CXCR4 interaction was blocked by anti-gp120 antibodies directed against the third variable (V3) loop and CD4-induced epitopes, structures that have also been implicated in the binding of gp120 to the other HIV-1 coreceptor, CCR5. Compared with the binding of R5 HIV-1 gp120s to CCR5, the gp120-CXCR4 interaction exhibited a lower affinity (K(d) = 200 nm) and was dependent upon prior CD4 binding, even at low temperature. Thus, although similar regions of X4 and R5 HIV-1 gp120s appear to be involved in binding CXCR4 and CCR5, respectively, differences exist in nonspecific binding to cell surfaces, affinity for the chemokine receptor, and CD4 dependence at low temperature.

Highlights

  • Genes encoding seven transmembrane domain, G proteincoupled receptors (GPCRs)1 account for ϳ1–2% of the human genome [1,2,3]

  • We studied the binding of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein to CXCR4 but found that the gp120s from CXCR4-using HIV-1 strains bound nonspecifically to several cell lines lacking human CXCR4 expression

  • Similar regions of X4 and R5 HIV-1 gp120s appear to be involved in binding CXCR4 and CCR5, respectively, differences exist in nonspecific binding to cell surfaces, affinity for the chemokine receptor, and CD4 dependence at low temperature

Read more

Summary

Introduction

Genes encoding seven transmembrane domain, G proteincoupled receptors (GPCRs)1 account for ϳ1–2% of the human genome [1,2,3]. Similar regions of X4 and R5 HIV-1 gp120s appear to be involved in binding CXCR4 and CCR5, respectively, differences exist in nonspecific binding to cell surfaces, affinity for the chemokine receptor, and CD4 dependence at low temperature. CCR5 in PMPLs bound conformation-dependent antibodies and complexes of HIV-1 gp120 and soluble CD4 [22]. This was documented by the binding of both conformation-dependent antibodies as well as the binding of SDF-1␣ to CXCR4 contained in cell lysates.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call