Abstract

Binding and releasing ligands are critical for the biological functions of many proteins, so it is important to determine these highly dynamic processes. Although there are experimental techniques to determine the structure of a protein-ligand complex, it only provides a static picture of the system. With the rapid increase of computing power and improved algorithms, molecular dynamics (MD) simulations have diverse of superiority in probing the binding and release process. However, it remains a great challenge to overcome the time and length scales when the system becomes large. This work presents an enhanced sampling tool for ligand binding and release, which is based on iterative multiple independent MD simulations guided by contacts formed between the ligand and the protein. From the simulation results on adenylate kinase, we observe the process of ligand binding and release while the conventional MD simulations at the same time scale cannot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.