Abstract

A newly developed dihydrazonopyrrole ligand and corresponding Ni complexes have been synthesized and thoroughly characterized. Electrochemical studies and chemical reactivity tests show that these complexes can reversibly store both electrons and protons, or equivalently H-atoms, via ligand-based events. The stored H-atom equivalent can be transferred to small molecules such as acetonitrile or oxygen. Furthermore, this series of complexes can adopt a variety of different coordination modes. In addition to one e- reactivity, the two e- electrophilic oxidation of phosphines is also demonstrated. Taken together, these results show that dihydrazonopyrrole complexes represent a geometrically and electronically flexible scaffold for controlling the flow of both electrons and protons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.