Abstract
Aurora-A (AURKA) is serine/threonine protein kinase involved in the regulation of numerous processes of cell division. Numerous studies have demonstrated strong association between AURKA and cancer. AURKA is overexpressed in many cancers, such as colon, breast and prostate cancers. Consequently, AURKA has emerged as promising target for therapeutic intervention in cancer management. Herein, we describe a computational workflow for the discovery of novel anti-AURKA inhibitory leads starting with ligand-based assessment of the pharmacophoric space of six diverse sets of inhibitors. Subsequently, machine learning/QSAR modeling was coupled with genetic function algorithm to search for the best possible combination of machine learner, ligand-based pharmacophore(s) and molecular descriptors capable of explaining variation in anti-AURKA bioactivities within a collected list of inhibitors. Two learners succeeded in achieving acceptable structure/activity correlations, namely, random forests and extreme gradient boosting (XGBoost). Three pharmacophores emerged in the successful ML models. These were then used as 3D search queries to mine the National Cancer Institute database for novel anti-AURKA leads. Top-ranking 38 hits were assessed in vitro for their anti-AURKA bioactivities. Among them, three compounds exhibited promising dose-response curves, demonstrating experimental IC50 values ranging from sub-micromolar to low micromolar values. Remarkably, two of these compounds are of novel chemotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.